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Abstract. We analyze the effects of the background velocity and the initial magnetic field correlations,
and viscosities on the turbulent dynamo and the α-effect. We calculate the α-coefficients for arbitrary
magnetic and fluid viscosities, background velocity and the initial magnetic field correlations. We explicitly
demonstrate that the general features of the initial growth and late-time saturation of the magnetic fields
due to the non-linear feedback are qualitatively independent of these correlations. We also examine the
hydrodynamic limit of the magnetic field growth in a renormalization group framework and discuss the
possibilities of suppression of the dynamo growth below a critical rotation. We demonstrate that for
Kolmogorov-(K41) type of spectra the Ekman number M � 1/2 for dynamo growth to occur.

PACS. 47.65.+a Magnetohydrodynamics and electrohydrodynamics – 91.25.Cw Origins and models of
the magnetic field; dynamo theories

1 Introduction

Magnetic fields are ubiquitous. All astrophysical objects
are known to have magnetic fields of different magnitudes,
e.g., 1 gauss at the stellar scale to 10−6 gauss at the galac-
tic scale [1]. The origin of such fields (primordial field)
is not very clear – there are several competing theories
which attempt to describe this [2]. However, a finite mag-
netic field in any physical system undergoes a temporal
decay due to the finite conductivity of the medium. So,
for steady magnetic fields to occur in astrophysical bod-
ies, there has to be a mechanism of regeneration of the
magnetic fields, which takes place due to the dynamo pro-
cess [1,3]. Most astrophysical bodies are thought to have
fast dynamo operating within themselves (there are excep-
tion to this, e.g., the Moon, Venus and Mars in our solar
system) resulting into exponential growth of the magnetic
fields. This mechanism requires a turbulent velocity back-
ground [1] (though non-turbulent velocity fields too can
make a seed (initial) magnetic field to grow (for details
see [3]), we will not consider such cases here). Since the
dynamo equation, in the linear approximation (see below)
gives unbounded exponentially growing solutions for the
long wavelength (large scale) part of the magnetic fields, it
is linearly unstable in the low wavenumber limit. However,
one does not see a perpetual growth of magnetic fields in
the core of the earth or in the sun. For example, geomag-
netic fields (∼1 gauss) are known to be stable for about
106 years [1]. Thus, the physically realisable solutions of
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the dynamo equations cannot be unstable in the long time
limit. It is now believed that the non-linear feedback due
the Lorentz force term in the Navier-Stokes equation is re-
sponsible for the saturation of the magnetic field growth
(see, e.g., [1]).

The study of this problem has already been the subject
of previous work by many groups. For example Pouquet,
Frisch and Léorat [4] studied the connections between
the dynamo process and the inverse cascade of magnetic
and kinetic energies within a eddy damped quasi-normal
Markovian approximation. Moffatt [5] has examined the
back reactions due to the Lorentz force for magnetic
Prandtl number Pm � 1 by linearising the equations of
motion of three-dimensional (3d) magnetohydrodynam-
ics (MHD). Vainshtein and Cattaneo [6] discussed sev-
eral nonlinear restrictions on the generations of magnetic
fields. Field et al. [7] discussed nonlinear α-effects within
a two-scale approach. Rogachevskii and Kleeorin [8] stud-
ied the effects of an anisotropic background turbulence on
the dynamo process. Brandenburg examined non-linear
α-effects in numerical simulation of helical MHD turbu-
lence [9]. In particular, he examined the dependences of
dynamo growth and the saturation field on the magnetic
Prandtl number Pm (the ratio of the magnetic- to the
kinetic- viscosities). Bhattacharjee and Yuan [10] studied
the problem in a two-scale approach by linearising the
equations of motion.

Dynamo mechanism has two competing processes at
work: amplification of the magnetic field by the dynamo
process and ohmic dissipation due to finite resistivity of
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the medium concerned. Which one among these two effects
will dominate depends on the case in study. In some spe-
cific models, however, one can analyze this completely. A
good example of such models is the Kraichnan-Kazantzev
dynamo [11,12] where the velocity field is assumed to
be Gaussian-distributed, delta-correlated in time and the
magnetic field is governed by the Induction equation [22].
In this model the statistics of the velocity field is taken to
be parity invariant so that the α-effect is ruled out. The
main results from this model include i) the existence of
dynamo in the infinite magnetic Reynolds number limit
for a particular choice of the variance of the velocity dis-
tribution [13] and ii) the existence of a critical magnetic
Reynolds number only above which dynamo growth is pos-
sible [14]. However, not much is known about this when
invariance due to parity is broken and when the velocity
field is not temporally delta-correlated. In a recent simu-
lations [15] the authors found, in a model simulation for
the solar convection zone, a monotonic increase of the hor-
izontal α-effect with rotation. Kida et al. showed, in nu-
merical simulations, that unless magnetic hyperviscosity is
less than a critical value, magnetic fields did not grow [31],
confirming the existence of a critical magnetic Reynolds
number (Rm).

Our studies generalize the existing results. In this pa-
per we use a minimal model of α-effect (see below) to
study dynamo with α-effect to calculate the α coefficient
for arbitrary correlations and viscosities, and ask the fol-
lowing questions:
1. Do the turbulent dynamo growth and the satura-

tion processes require any turbulent background? Or
do they function with arbitrary parity-breaking and
fluctuating velocity and initial magnetic field correla-
tions?1.

2. What is the hydrodynamic limit (long wavelength
limit) of the dynamo problem? By this we ask how
the magnetic field correlations scale in the infra red
limit during the initial-growth regime.

3. Can arbitrarily large magnetic viscosity prevent dy-
namo growth? In other words, is there a critical mag-
netic Reynolds number Rm above which the dynamo
growth sets in?

To study the above mentioned questions we employ a di-
agrammatic perturbation theory, which has been highly
successful in the contexts of critical dynamics [18], driven
systems [19], etc. This can be easily extended to higher
orders in perturbation expansion and is very suitable for
handling continuous kinetic and magnetic spectra, un-
like the two-scale approximation. This was first used to
study stationary, homogeneous and isotropic MHD in ref-
erence [20]. We use this method to study non-stationary
statistical states (dynamo growth) which facilitates stud-
ies on the hydrodynamic limit of the dynamo problem in

1 By a turbulent background we do not mean any kind
of fluctuating state but a fluctuating state with Kolmogorov
(K41) spectra ∝ k−5/3 for the kinetic and magnetic energies
and cascades of appropriate quantities; if there is no mean mag-
netic field then the energy spectra is expected to be K41-type
– see reference [16].

a renormalisation group framework. We use diagrammatic
perturbation theory to calculate expressions for the α coef-
ficients for arbitrary background velocity and initial mag-
netic field correlations and magnetic Prandtl number Pm

for both the early growth and the late time saturation.
With our expressions for α we examine the three issues
mentioned above.

We investigate these for arbitrary correlations and
magnetic Prandtl number Pm with no approximations
other than the existence a perturbation theory. Our prin-
cipal results are:

• We calculate the α-coefficients for arbitrary correla-
tions and viscosities.

• We examine the hydrodynamic limit in the kinematic
regime and predict the existence of a critical Rm or
rotation above which dynamo growth will occur for
certain correlations with infra red singularity.

In our all our studies, we do not assume any variance
for the velocity field. Instead, we use the Navier-Stokes
equation to describe the dynamics of the velocity field.
This allows us to use a renormalisation group framework
to study the hydrodynamic limit.

The first question that we investigate is phenomeno-
logically very important because different systems may
have different velocity and initial magnetic field spectra.
Therefore, it is important to understand the dependence
of the dynamo on these spectra. We explicitly demonstrate
that the nonlinear feedback of the magnetic fields on the
velocity fields in the form of the Lorentz force stabilizes
the growth for arbitrary velocity and initial magnetic field
correlations. This demonstrates that the basic features of
the dynamo mechanism are qualitatively independent of
the velocity and magnetic field spectra and, essentially,
are properties of the 3dMHD equations. Details (e.g., the
values of the α-coefficients) of course, depend upon the
actual forms of the spectra. Our renormalization group
analysis indicates that dynamo growth takes place only
if the Ekman number M � 1/2 (for a given Rm) when
the velocity and the initial magnetic field spectra are suf-
ficiently singular in the long wavelength limit. The struc-
ture of this paper is as follows: In Section 2 we discuss
the general dynamo mechanism within the standard linear
approximation for arbitrary velocity and initial magnetic
field correlations and viscosities. In Section 3.2 we show
that beyond the linear approximation non-linear effects
lead to the eventual saturation of magnetic field growth
for arbitrary background kinetic energy and initial mag-
netic energy spectra, and viscosities. We elucidate how
different background kinetic energy and initial magnetic
energy spectra affect the values of the α-coefficients. In
Section 4 we analyze the initial dynamo growth in a renor-
malization group framework. We show that for sufficiently
singular velocity and magnetic field spectra the Ekman
number must be �1/2 for the magnetic fields to grow. For
velocity and magnetic field spectra which go to zero in
the long wavelength limit there are no such restrictions.
In Section 5 we present our conclusions.
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2 Dynamo growth: the linear approximation

In the kinematic approximation [1,21], i.e., in the early-
time regime, when the magnetic energy is much smaller
than the kinetic energy (

∫
u2d3r � ∫

b2d3r, where u(r, t)
and b(r, t) are the velocity and magnetic fields respec-
tively) the Lorentz force term of the Navier Stokes equa-
tion is neglected. In that weak magnetic field limit, which
is reasonable at an early time, the time evolution problem
for the magnetic fields is a linear problem as the Induction
equation [22] is linear in magnetic fields b:

∂b
∂t

= ∇× (u × b) + µ∇2b, (1)

where µ is the magnetic viscosity. The velocity field is gov-
erned by the Navier-Stokes equation [23] (in the absence
of the Lorentz force)

∂u
∂t

+ u · ∇u = −∇p

ρ
+ ν∇2u + f . (2)

Here ν is the fluid viscosity, f an external forcing function,
p the pressure and ρ the density of the fluid. We take f to
be a zero mean, Gaussian stochastic force with a specified
variance (see below).

In a two-scale [1] approach one can then write an ef-
fective equation for B, the long-wavelength part of the
magnetic fields [1]:

∂B
∂t

= ∇× (U × B) + ∇× E + µ∇2B, (3)

where the Electromotive force E = 〈u×b〉. U is the large
scale component of the velocity field u. An Operator Prod-
uct Expansion (OPE) is shown to hold [21] which provides
a gradient expansion for the product E = 〈u×b〉 in terms
of B [1]

Ei = αijBj + βijk
∂Bj

∂xk
+ .... (4)

For homogeneous and isotropic flows (αij = αδij) equa-
tion (4) gives,

∂B
∂t

= ∇× (U × B) + α∇× B + µ∇2B, (5)

which is the standard turbulent dynamo equation. Here
µ now is the effective magnetic viscosity which includes
both the microscopic magnetic viscosity and the turbulent
diffusion, represented by βijk in equation (4). α depends
upon the statistics of the velocity field (or, equivalently,
the correlations of f). Retaining only the α-term and drop-
ping all others from the RHS of equation (5), the equations
for the Cartesian components of B become (we neglect the
dissipative terms proportional to k2 as we are interested
only in the long wavelength properties)

d

dt


Bx(k, t)

By(k, t)
Bz(k, t)


 = iα


 0 −kz ky

kz 0 −kx

−ky kx 0





Bx(k, t)

By(k, t)
Bz(k, t)


 .

The eigenvalues of the matrix is λ = ±ik, 0. Thus de-
pending on the sign of the product αk, one mode grows
and the other decays. The third mode is unphysical, be-
cause the corresponding eigenfunction is proportional to
k and hence in conflict with ∇ · B = 0. Since growth
rate is proportional to |k| and dissipation is proportional
to k2, large scale fields continue to grow leading to long
wavelength instability. Thus in the long time limit effec-
tively only the growing mode remains. Growth rate α is
a pseudo-scalar quantity, i.e., under parity transformation
r → −r, α → −α [1,21]. Since α depends upon the sta-
tistical properties of the velocity field, its statistics should
not be parity invariant. This can happen in a rotating
frame, where the angular velocity explicitly breaks reflec-
tion invariance.

3 Formulation of the dynamo problem
in a rotating frame

The Navier-Stokes (NS) (including the Lorentz force) and
the Induction equation in an inertial frame in (k, t) space
take the form

∂ui(k, t)
∂t

+
1
2
Pijp(k)

∑
q

uj(q, t)up(k − q, t) =

1
2
Pijp(k)

∑
q

bj(q, t)bp(k − q, t) − νk2ui + fi(k, t), (6)

and
∂bi(k, t)

∂t
= P̃ijp(k)

∑
q

uj(q, t)bp(k − q, t) − µk2bi. (7)

Here, ui(k, t) and bi(k, t) are the Fourier trans-
forms of ui(r, t) and bi(r, t) respectively, Pijp(k) =
Pij(k)kp + Pip(k)kj , P̃ijp(k) = Pij(k)kp − Pip(k)kj , Pij

is the projection operator, which appears due to the
divergence-free conditions on the velocity and magnetic
fields (we consider an incompressible fluid for simplicity).
Equations (6, 7) have to be supplemented by appropriate
correlations of fi and initial conditions on bi. We choose
fi(k, t) and bi(k, t = 0) to have zero mean and to be
Gaussian distributed with the following variances:

〈fi(k, t)fj(−k, 0)〉 = 2PijD1(k)δ(t), (8)

〈bi(k, t = 0)bj(−k, t = 0)〉 = 2PijD2(k), (9)

where D1 and D2 are some functions of k (to be specified
later).

In a rotating frame with a rotation velocity Ω = Ωẑ
equation (6) takes the form

∂ui(k, t)
∂t

+2(Ω× u)i+
1
2
Pijp(k)

∑
q

uj(q, t)up(k − q, t) =

1
2
Pijp(k)

∑
q

bj(q, t)bp(k − q, t) + ν∇2ui + fi(k, t), (10)

whereas equation (7) has the same form in the rotating
frame. Ω × u is the coriolis force. The centrifugal force
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Ω×(Ω×r) is a part of the effective pressure=p+ 1
2 |Ω× r|2

which does not contribute to the dynamics of incompress-
ible flows. The bare propagator Gu (obtained from the
linearized version of Eq. (10)) of ui

Gu =


iω + νk2

(iω + νk2)2 + 4Ω2
− 2Ω

(iω + νk2)2 + 4Ω2
0

2Ω

(iω + νk2)2 + 4Ω2

iω + νk2

(iω + νk2)2 + 4Ω2
0

0 0
1

iω + νk2




such that u = Gu f where u is the column vector

u =


ux

uy

uz


 .

One can verify that with the form of the bare prop-
agator given above, an odd-parity part in the velocity
auto-correlator 〈ui(k, t)uj(−k, 0)〉 appears which is pro-
portional to the rotation Ω. Notice that Gzz

u is different
from Gxx,yy

u – this is just the consequence of the fact that
Ω distinguishes the z-direction as a preferred direction
in space, making the system anisotropic. However for fre-
quencies ω � Ω or length scales kz � Ω (here z is the dy-
namical exponent) isotropy is restored. In that regime, to
O(Ω) the role of the global rotation is to introduce a non-
zero odd-parity part in 〈uiuj〉 proportional to Ω. This can
be also seen by noting that in the inertial frame the corre-
lation 〈ui(k)uj(−k)〉 is of the form Pij(k)A(k) (cf. Eq. (8))
where A(k) is a scalar function of k and hence in the rotat-
ing frame the correlator is proportional to RPijR

T where
R’s are appropriate rotation matrices (we have suppressed
the indices). Similarly, initial magnetic field correlations,
given by equation (9) transforms accordingly in the rotat-
ing frame. Since rotation matrices act on 〈ui(k)uj(−k)〉
and equation (9) in the same way, magnetic field auto-
correlator 〈bi(k, t)bj(−k, 0)〉 has an odd parity part in the
rotating frame with the same sign as the odd parity part
in the velocity correlator. Thus the effects of rotation can
be modeled (to the lowest order) by introducing parity
breaking parts in equations (8, 9) [1]

〈fi(k, t)fj(−k, 0)〉 = 2PijD1(k)δ(t) + 2iεijpkpD̃1(k)δ(t),

〈bi(k, t=0)bj(−k, t=0)〉=2PijD2(k)δ(t)+2iεijpkpD̃2(k),
(11)

in conjunction with equations (6, 7), where εijp is the to-
tally antisymmetric tensor in 3d. This way of modeling
rotation effects is, of course, only approximate, but suf-
fices for our purposes as this explicitly incorporates parity
breaking. One can, however, construct experimental set
ups [1] which are described correctly by equations (11).
The parity breaking parts in the noise correlations or ini-
tial conditions ensure that the velocity and the initial mag-
netic field correlators have non-zero odd parity parts, as

would happen in a rotating frame. An important dimen-
sionless number is the Ekman number M = νL2

2Ω which can
be related to D̃1 by equating the parity braking parts of
the velocity correlator calculated from (linearized) equa-
tions (10, 8) with that from equations (6, 11). This gives
D̃1 = 2M−1D1. Now, one may ask what is the relative sign
between D̃1 and D̃2? Since the parity breaking parts of
the correlators of the velocity and the magnetic fields have
same sign and are proportional to D̃1 and D̃2 respectively,
D̃1 and D̃2 must have same sign. As already noted, intro-
duction of parity breaking terms in the force/initial cor-
relations is well-known in the literature, we, nevertheless,
give the analysis in details in order to emphasize on the
fact that fluid and magnetic helicities must have the same
sign. Furthermore, for a complete description of the ef-
fects of rotation, in addition to the coriolis force, a forcing
with a preferred direction is also required. We, however,
do not include all these details as introduction of parity-
breaking correlations is sufficient for our purposes. In this
sense, this can be thought of as a reduced or a minimal
model for dynamo. One may note that a nonzero kinetic
helicity is required for the α-effect as the α-coefficient is
proportional to the kinetic helocity. Even though a global
rotation explicitly breaks the parity invariance of the sys-
tem under space reversal, rotation alone is not enough to
yield a non-zero helicity. This is because the helicity is
pseudo-scalar and, therefore, can be constructed only out
of an axial vector (here, rotation Ω) and a polar vector.
In typical astrophysical settings, the latter one could be
provided by, say, a density inhomogeneity. Even though
this is not contained in equation (6), our minimal model,
nevertheless, produces a finite helicity due to the helical
nature of the forcing function. Thus, our minimal model
is able to capture both the breakdown of parity due to the
rotation and the generation of helicity due to the rotation
and any other preferred direction.

3.1 The α in the kinematic approximation:
Dependences on background velocity and initial
magnetic field spectra

In the kinematic approximation, which neglects the
Lorentz force term of the Navier-Stokes equation, the time
evolution of the magnetic fields follows from the linear
Induction equation (1). We assume, for the convenience
of calculations, that the velocity field (u) has reached a
statistical steady state. This is acceptable as long as the
loss due to the transfer of kinetic energy to the magnetic
modes by the dynamo process is compensated by the ex-
ternal drive. In the kinematic (i.e., linear) approximation,
we work with equations (6) (without the Lorentz force)
and (7). We choose fl(k, t) to be a zero-mean, Gaussian
random field with correlations

〈fl(k, t)fm(k, 0)〉 = 2PlmD1(k)δ(t) + 2iεlmnknD̃1(k)δ(t).
(12)

Our initial conditions for the magnetic fields are

〈bα(k, t = 0)bβ(−k, t = 0)〉 = 2PαβD2(k)+2iεαβγkγD̃2(k),
(13)
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〈(u × bi)F 〉 =

〈∫
q

εijpuj(q, t)bp(k − q, t)

〉
(16)

=

〈
i

2
εijp

∫
q

Pjmn(q)Gu
o (q, t − t1) bm(q1, t1)bn(q − q1, t1)G

b
o(k − q, t)bp(k− q, t = 0)

〉
(17)

D
~

1(a) D
~

2

(b)

Fig. 1. Tree level diagrams for 〈u(q) × b(k− q)〉. (a) Contribution to growth term αD: A solid line indicates a bare magnetic
field response function, a broken line indicates a bare velocity response function, a ‘o’ joined by two broken lines indicates a
bare velocity correlation function (proportional to D̃1), a wavy line indicates a magnetic field, a solid triangle indicates a ub
vertex. (b) Contribution to feedback term αF : A solid line indicates a bare magnetic field response function, a broken line
indicates a bare velocity response function, a ‘o’ joined by two broken lines indicates a bare magnetic field correlation function
(proportional to D̃2), a wavy line indicates a magnetic field, a solid triangle indicates a ub vertex.

Since we are interested to investigate the dynamo pro-
cess with arbitrary statistics for the velocity and mag-
netic fields we work with arbitrary D1(k), D̃1(k), D2(k)
and D̃2(k). For K41-type spectra, we require [24] D1(k) =
D1k

−3, D̃1(k) = D̃1k
−4, D2(k) = D2k

−5/3 and D̃2(k) =
k−8/3. These choices ensure that under spatial rescaling
x → lx, u,b → l1/3{u,b} which is the Kolmogorov scal-
ing [24]. Note that both the force correlations in equa-
tion (6) and the initial conditions in equation (7) have
parts that are parity breaking, in conformity with our
previous discussions. We now calculate the α-term. We
use an iterative perturbative method which is very sim-
ilar to and discussed in details in reference [19]. In this
method, terms in each order of the perturbation series
can be represented by appropriate Feynman diagrams [19].
Even though, for simplicity, we confine ourselves to the
lowest order in the perturbation theory (represented by
the tree level diagrams), which is sufficient for our pur-
poses, higher order calculations represented by higher or-
der diagrams can be done in a straight forward manner.
Below we give the expression for α in the kinematic ap-
proximation (which we call the ‘direct’ term – responsible
for growth) in the lowest order of the perturbation theory
(see Fig. 1a):

〈(u × b)µ〉D =
〈∫

q,q1

εµβγuβ(q, t)bγ(k − q, t)
〉

=

〈 ∫
q

εαβγuβ(q, t)εγδλi(k − q)δuη(q1, t1)

× bτ (k − q − q1, t1)Gb
0(k − q, t − t1)

〉

(14)

from which one can read the α-term:

αDBα(k, t) =
∫

q

iD̃1(q)
νq2

εβηρqρεαβγ(−i)qδbρ(k, t = 0)

×
[

1
q2(ν + µ)

+
exp(−2tνq2)

q2(ν − µ)

]
(15)

giving αD = 2S3
3

1
ν(ν+µ)

∫
q
2 D̃(q)

(ν+µ)q2 for large t. The suffix
D refers to growth or the direct term, as opposed to feed-
back which we discuss in the next Section 3.2. The growth
term is proportional to |k| and diffusive decay proportional
to k2. The angular brackets represent averaging over the
noise and initial-condition ensembles.

3.2 Suppression of growth rate: Nonlinear feedback

When the magnetic fields become strong, it is no longer
justified to neglect the feedback of the magnetic fields in
the form of the Lorentz force. So we need to work with the
full equations (6, 7). The ideas of OPE as elucidated in
Section 2 are still valid for the full non-linear problem. But
the value of α is expected to change from its value in the
linear problem. In presence of the Lorentz force there is an
additional contribution to α (Fig. 1b). To evaluate that,
we follow a diagrammatic perturbation approach similar
to that described in the previous Section. Here also we re-
strict ourselves to the lowest order only (i.e., the tree level
diagrams) though extension to higher orders is straight
forward. We obtain

see equations (16, 17) above
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D2
~

D2

k

B (k)
i

(a)

D2
~

k

B (k)
i

D
1

(b)

Fig. 2. Two one-loop diagrams contributing to αF . There are total six diagrams altogether.

which gives (F refers to feedback)

αF Bi(k, t) = iεijp

∫
q

Pjmn(q)e2αD |q|t−2µq2tbn(k, t)

× −2iD̃2(q)εmpsqs

2αD|q| − 2µq2
, (18)

which, after some simplifications, yields,

αF (t) =
2S3

3
4
15

∫
q

D̃2(q, t)q2

αD|q| − 2µq2
, (19)

where D̃2(q, t) = exp[2αD|q|t − 2µq2t]D̃2(q) is a grow-
ing function of time for small wavenumbers. As before,
angular brackets refer to averaging over noise and initial-
condition ensembles. Thus αF grows in time.

Since, at any finite time t, when the non-linear feed-
back on the velocity field due to the Lorentz force is no-
longer negligible, both αD and αF are non-zero and we
get

αD = −2S3

3

∫
d3q

(2π)3
D̃1(q)

ν[|(αD + αF )q| − (ν + µ)q2]
,

αF =
2S3

3
4
15

∫
d3q

(2π)3
D̃2(q, t)q2

|(αD + αF )q| − 2µq2
, (20)

with

D̃2(q, t) = exp[2(αD − αF (t))|q|t − 2µq2t]D̃2(q). (21)

Equations (20) and (21) are to be solved self-
consistently [17]. Thus the net growth rate is proportional
to |(αD + αF )k| for the mode Bi(k, t). The expressions
(20) have apparent divergences at finite q; so in perturba-
tive calculations one should treat the α-terms as pertur-
bations which remove these divergences. This problem is

akin to that in the Kuramoto-Shivashinsky equation for
flame front propagation [25]. So the expressions for αD

and αF are

αD =
2S3

3

∫
d3q

(2π)3
D̃1(q)

ν(ν + µ)q2
, (22)

αF = −2S3

3
4
15

∫
d3q

(2π)3
D̃2(q, t)
2µq2

, (23)

which do not have any finite wavevector singularity. Ex-
pressions (22, 23) are obtained, as mentioned before, by
truncating the perturbation series at the tree level. Ex-
tensions to higher orders are straight forward. Illustrative
examples of higher order diagrams have been shown in
Figure 2.

Let us now consider various k dependences of D̃1(k)
and D̃2(k). When the background velocity field is driven
by the Navier-Stokes equation with a conserved noise
(thermal noise) one requires that D1(k) = D1k

2, D̃1 =
D̃1|k|, giving 〈ui(k, t)ui(−k, t)〉 = constant. If we assume
similar k-dependences for 〈bi(k, 0)bi(−k, 0)〉 then we re-
quire D2(k) ∼ constant and D̃2(k) = D̃2

|k| . These choices
yield

αD =
2S3

3

∫
d3q

(2π)3
D̃1|q|

ν(ν + µ)q2
,

αF = −2S3

3
4
15

∫
d3q

(2π)3
exp[2(αD − αF )|q|t]

2µ|q| , (24)

which remain finite even if the system size diverges.
A fully developed turbulent state, characterised by

K41 energy spectra, is generated by D1(k) ∼ k−3 and
D̃1(k) = D̃1k

−4. In addition if we assume that the ini-
tial magnetic fields correlation also have K41 scaling then
D2(k) ∼ k−5/3 and D̃2(k) = D̃2k

−8/3. If one starts with a
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K41-type initial correlations for the magnetic fields, then
at a later time the scale dependence for the magnetic field
correlations are likely to remain same; only the amplitudes
grow. Notice that the spectra diverge as wavevector k → 0,
i.e., as the system size diverges. This is a typical charac-
teristic of fully developed turbulence. For such a system
we find (with Pm = µ/ν)

αD =
2S3

3

∫
d3q

(2π)3
D̃1q

−4

ν(ν + µ)q2

=
2S3

3

∫
d3q

(2π)3
2M−1D1

ν2(1 + Pm)q6
,

αF = −2S3

3
4
15

∫
d3q

(2π)3
D̃2(t)q−8/3

2µ

= −2S3

3
4
15

∫
d3q

(2π)3
D̃2(t)q−8/3

2Pmν
. (25)

The notable difference between the expressions equa-
tions (24, 25) for the α coefficients is that the α coeffi-
cients diverge with the system size if the energy spectra
are singular in the infra red limit (as in for fully developed
turbulence). These divergences are reminiscent of the di-
vergences that appear in critical dynamics [18] which are
handled by renormalisation group methods.

In general, at early times (small αF ), αF increases ex-
ponentially in time. The growth rate of αF decreases with
time. Since αD and αF have different signs, |(αD +αF )| →
0 as time t increases. Thus the net growth rate comes down
to zero. Hence, equations (24, 25) suggest that the early-
time growth and late time saturation of magnetic fields
take place for different types of background velocity cor-
relations and initial magnetic field correlations. Therefore
dynamo instability and its saturation are rather intrinsic
properties of the 3dMHD equations with broken reflec-
tion invariance. One may also note that for K41-type of
correlations (singular in the infrared limit) one has for-
ward cascade of kinetic energy [24]: This is because energy
is fed into the system mostly in the large scale (i.e., for
small k) whereas, dissipation acts primarily in the small
scales (large k), resulting into a cascade of energy from the
large- to small-scales. On the other hand, for correlations
smooth in the infra red limit, there is no such cascade.
These results indicate that the existence of the dynamo
mechanism does not require any special background ve-
locity field spectrum, though the value of the α-coefficient
depends upon it. Our results also suggest that these pro-
cesses may take place for varying magnetic Prandtl num-
ber Pm = µ/ν. The above analysis crucially depends on
the fact that αF and αD have opposite signs, which, in
turn, imply that D̃1 and D̃2 have same signs. We have al-
ready seen that in a physically realisable situation where
parity is broken entirely due to the global rotation, D̃1 and
D̃2 indeed have the same sign.

In the first order smoothing approximation [1,26] in the
kinematic limit, to calculate 〈u×b〉 one considers only the
Induction equation as u is supposed to be given. However

when one goes beyond the kinematic approximation, one
has to consider the Navier-Stokes equation as well. Thus
in the first-order smoothing approximation one writes the
equations for the fluctuations u and b as (to the first
order)

∂b
∂t

≈ ∇× (u × B) + ∇× (U × b), (26)

and
∂u
∂t

≈ . . . + (B.∇)b, (27)

where the ellipsis refer to all other terms in the Navier-
Stokes equation and B and U are the large scale (mean
field) part of the velocity and magnetic fields [1,26]. With
these we can write

〈u × b〉i = 〈εijpujbp〉

=
〈

εijpujBm
∂

∂xm
up

〉
+

〈
εijpbpBm

∂

∂xm
bj

〉

≡ αimBm + . . . (28)

Here the ellipsis refer to non-α terms in the expansion
of 〈u × b〉 (see Eq. (4)). Thus for isotropic situations
α = τ

3 [−〈u.(∇× u)〉 + 〈b.(∇× b)〉] where τ is a corre-
lation time. Thus α is proportional to the difference in
the fluid and magnetic torsalities [4], (fluid helicity being
the same as fluid torsality and magnetic helicity being pro-
portional to magnetic torsality) a result obtained in [4,7]
using other methods and approximations. Note that equa-
tions (21, 23) are very similar to but not exactly the one
that were obtained in [7] (in our notations D̃1 is propor-
tional to fluid torsality (or fluid helicity) and D̃2 is propor-
tional to magnetic torsality). We ascribe this difference to
the essential difference between a two-scale approach and
our diagrammatic perturbation theory which, we believe
is more suitable for handling continuous kinetic and mag-
netic spectra.

4 Hydrodynamic limit of dynamo growth

We have seen that in equations (25) the α-coefficients di-
verge in the hydrodynamic (k → 0) limit which calls for
a renormalisation group (RG) analysis as a natural ex-
tension of our diagrammatic perturbative calculations. In
fully developed 3dMHD, in the steady state, correlation
and response functions exhibit dynamical scaling with the
dynamic exponent z = 2/3 [27,28] (for a different ap-
proach see [29]), which means renormalised viscosities (ki-
netic as well as magnetic) diverge ∼k−4/3 for a wavenum-
ber k belonging to the inertial range. Even for decaying
MHD with initial K41-type correlations this turns out to
be true [30] where equal time correlations exhibit dynam-
ical scaling with z = 2/3. The question is, what it is
in the initial transient of dynamo growth (t 	 satura-
tion time). We examine this in a renormalization group
framework. Since we are interested in the early growth,
we neglect the Lorentz force and work with equation (7)
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inconjunction with the initial magnetic field correlations
and noise correlation given by equation (11). As before,
we assume a statistical steady state for the velocity field.
It is well-known that correlations 〈ui(k, t)uj(−k, 0)〉 ex-
hibit scaling form k−d−2χh(tkz) where χ and z are the
spatial scaling and dynamical exponents respectively [24]
where h is a scaling function. The Galilean invariance of
the MHD equations constraints these exponents to obey
the relation χ + z = 1 [24,28,33]. In addition to that,
for fully developed turbulence due to non-renormalization
of the noise-correlators (cf. Eq. (8)) the exponents are
fully determined: z = 2/3, χ = 1/3, which means the
renormalised fluid viscosity diverges as k−4/3 in the limit
wavevector k → 0. During early growth, equal-time mag-
netic field correlations 〈bi(k, t)bj(−k, t)〉 are expected to
exhibit a scaling form k−d−2χbm(tkz

b ) (t 	 saturation
time) where χb and zb are the magnetic spatial scaling
and dynamical exponents respectively, and m is a scaling
function. Similar conditions arising from the Galilean in-
variance and non-renormalization of the initial K41-like
magnetic field spectrum determines z = zb = 2/3 and
χ = χb = 1/3. We perform a renormalization group
analysis following [19,24,30]. As mentioned earlier, the α-
term is treated as a perturbation. In a renormalisation-
group transformation, one integrates out a shell of modes
Λe−l < q < Λ, and and simultaneously rescales length
scales, time intervals and fields through x → elx, t →
elzt, u → elχu, b → elχb. This has the effect that the
nonlinearities are affected only by naive rescaling (this,
a consequence of the Galilean invariance of the 3dMHD
equations, essentially implies that the diagrammatic cor-
rections to the nonlinearties vanish in the long wavelength
limit). The variances equation (8), which diverge at low
wavenumbers remain unrenormalised and thus affected
only by rescaling. There are however fluctuations correc-
tions to µ and αD which we evaluate at the lowest order.
The resulting RG flow equations for µ and αD, obtained
in a one-loop calculation are

dµ

dl
= µ

[
zb − 2 + A1

D1

ν2(ν + µ)Λ4

]
, (29)

dαD

dl
= αD

[
zb − 1 + A2

D̃1

αDν(ν + µ)Λ3

]
, (30)

where A1, A2 are numerical constants. Equations (30)
and (30) are similar to those presented in reference [32]
(Eqs. (10.13) and (10.14)) but not exactly same. The dif-
ferences arise mainly (apart from some detail technical dif-
ferences in the perturbation theories involed) from the fact
that in reference [32] the expressions for the α-coefficients
were derived for a given variance of the velocity field. In
contrast, we use the Navier-Stokes equation, driven by a
stochastic force of given variance, in place of a given veloc-
ity variance. By substituting the value of the exponents in
equations (30, 30) we find renormalized (i.e., wavevector
dependent) αD(k) ∼ αDk−1/3, µ(k) ∼ k−4/3 in the hydro-
dynamic (k → 0) limit. Thus in that limit, the effective

dynamo equation takes the form

∂bi

∂t
= (αD − µ)k2/3bi + .... (31)

where the ellipsis refer to non-linear terms and i refers
to the growing mode. Thus, in the hydrodynamic limit,
there is growth of the magnetic fields only if αD − µ > 0.
This can happen only if the renormalised magnetic vis-
cosity is less than a critical value, set by αD, i.e., the
kinetic helicity. In terms of the Ekman number M this
condition means M � 1/2 for no growth, equivalently
M � 1/2 for growth of the magnetic fields. This can be
achieved in two ways, namely by increasing the rotation
speed, keeping the magnetic viscosity (or the magnetic
Reynolds number) constant, or decreasing the magnetic
viscosity (i.e., increasing the magnetic Reynolds number)
for a constant rotation. This conclusions are in good agree-
ment with the numerical results of reference [14]. Since
renormalised magnetic viscosity increases with its bare
(microscopic) value, it suggests that bare magnetic vis-
cosity must be less than a critical value for growth to be
possible. Thus our RG results qualitatively explain the nu-
merical results of Kida et al. [31] who they found that un-
less magnetic hyperviscosity was less than a critical value
there was no growth (it can be easily argued that a hyper-
magnetic viscosity gives rise to a magnetic viscosity in the
longer scale and hence their result in effect imposes a crit-
ical value of the magnetic viscosity). In our model α-effect
is proportional to D̃ which in turn is proportional to the
global rotation frequency. Hence our results suggest that
α-effect is likely to grow with increasing rotational speed
which is in agreement with the results of reference [9]. On
the other hand, if the background velocity and the initial
magnetic field correlators do not have an infra red sin-
gularity (i.e., when the correlators ∼k2) there is no fluc-
tuation correction to the magnetic viscosity and to the
α-coefficient resulting in the fact that the growth term
(∝ k) dominates over the dissipation (∝ k2) for sufficiently
small wavenumber k, leading to growth even for arbitrar-
ily large magnetic viscosity. Therefore, there is no criti-
cal Rm. Thus the effects of the infrared divergences that
appear in the expressions for the α-coefficients (Eq. (25))
are quite significant: They indicate, as for the driven dif-
fusive nonequilibrium systems with diverging kinetic co-
efficients in the hydrodynamic limit [19,24], divergence of
time-scales in the hydrodynamic limit. Since, the α-term
in equation (7) is proportional to wavenumber k, the time-
scale of growth of the mode with wavenumber k is O(αk).
This remains true, even in the hydrodynamic limit, for the
case when there is no divergence in the α-coefficients. In
contrast, when the α-coefficient diverge in the infra red
limit, the growth rate changes qualitatively from its lin-
ear dependence on wavenumber k in the hydrodynamic
limit. For example, with the the background velocity cor-
relations and the initial magnetic field correlations given
by equation (8), the α coefficients diverge as k−1/3 in the
long wavelength limit. Hence, the effective growth rate
is changed to α(k)k ∼ k2/3. A full self-consistent calcu-
lation (when feedback due to the Lorentz force cannot
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be neglected) for the α-coefficients require simultaneous
solutions of the self-consistent expressions for magnetic
Prandtl number, magnetic- to kinetic-energy ratio and the
α-coefficients which can be handled in our scheme of cal-
culations. The self-consistent solutions are expected to be
influenced by the degree of crosscorrelations between the
velocity and magnetic fields [33].

So far, we have assumed that both D1(k) and D̃1(k)
have the same infra red singularity (D1(k) ∼ k−5/3 and
D̃1(k) ∼ k−5/3). This need not be the case always. How-
ever, if D̃1(k) is non-singular then αD does not diverge.
As a result, the growth rate is just αDk even in the hy-
drodynamic (long wavelength) limit. Effective dissipation,
however, will still be ∼k2/3 and thus it will dominate over
O(k) growth. Therefore, there will be no growth in the
hydrodynamic limit. Thus, our analyses suggest that in
any fully developed turbulent system with α-effect, helic-
ity spectrum (given by D̃1(k)) should be as singular as the
kinetic energy spectrum (given by D1(k)).

5 Conclusions

In conclusions, we have calculated expressions for the α-
coefficients in a diagrammatic perturbation theory on a
minimal model for arbitrary background velocity and ini-
tial magnetic field correlations, and fluid and magnetic
viscosities. We show that the parity breaking parts of the
velocity and magnetic field variances must have the same
sign, which is the case in any physical system. We explic-
itly show that the processes of early growth and late-time
saturations may take place independent of any special ve-
locity and initial magnetic field correlations. Even though
our explicit calculations were done by using simple initial
conditions for the calculational convenience, the results
that we obtain are general enough and it is apparent that
the feedback mechanism is qualitatively independent of
the details of the initial conditions and force correlations.
one may note that for one of the force/initial correlations
there is no kinetic energy cascade in the conventional sense
but we still find dynamo action. It is quite reasonable
to expect that our results should be valid for more re-
alistic initial conditions also. In effect we have explicitly
demonstrated the robustness and generality of the dynamo
mechanism and that the dynamo mechanism is an intrinsic
property of the 3dMHD equations. We have also shown,
within our RG analysis, that the magnetic viscosity should
be less than a critical value for growth of magnetic fields a
result which was previously observed in numerical simula-
tions. We conclude the existence of a critical Ekman num-
ber for K41-type correlations: We find growth only when
M � 1/2, confirming recent numerical results. This is eas-
ily understood in our framework. The issue of divergent
effective viscosities in the inertial range assumes impor-
tance as it may help to overcome some of the non-linear
restrictions as discussed by Vainshtein and Cattaneo [6].
A system of magnetohydrodynamic turbulence in a ro-
tating frame, after the saturation time (i.e., after which
there is no net growth of the magnetic fields) belongs to

the universality class of usual three-dimensional magne-
tohydrodynamic turbulence in a laboratory. This can be
seen easily in both the lab and the rotating frames; the
critical exponents characterising the correlation functions
can be calculated exactly by using the Galilean invari-
ance and noise-nonrenormalisation conditions [24,28]. An
important question, which remains open for further inves-
tigations, is the multiscaling properties of the velocity and
the magnetic field structure functions at various stages of
the growth of the magnetic fields. In what concerns an ex-
perimental observation of our results, one should add that
even though it is not easy to verify our results in an exper-
imental set up, numerical simulations of equations (6, 7)
with the variances (11) with different k-dependences can
be performed to check these results.

The author wishes to thank J.K. Bhattacharjee for drawing
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the anonymous referee for many fruitful comments and sugges-
tions. The author thanks the Alexander von Humboldt Foun-
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